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I. Introduction 

A number of ways exist for specifying the symmetry of 
a chemical structure, each suitable for different purposes. For 
most applications the familiar geometric point group is cho­
sen.23 In some spectroscopic applications it is necessary to take 
internal motion into account and specify a nonrigid symmetry 
group.2b For applications in dynamic stereochemistry it is 
necessary to consider the group of all permutations of identical 
atoms and often several subgroups.3 Symmetry groups that 
include the point group and operations that invert chiral centers 
are useful both in constructing chirality functions4 and in 
specifying the pseudochirality of a structure.5 An extension 
of the latter concept leads to a novel symmetry group for a 
chemical structure that includes, in part, features of all these 
cases. The purpose here is to describe the formulation of this 
group, which we term the "configuration symmetry group". 

This symmetry group is the key construction that leads to 
three interesting and important results: (a) an algorithm that 
exhaustively and irredundantly generates the possible distinct 
stereoisomers of a chemical structure of specified constitution, 
a result for which no satisfactory solution has been available; 
(b) a specification of the configuration of a stereoisomer of an 
organic molecule of specified constitution that is independent 
of any geometrical property and that is needed for computer-
assisted structure elucidation; (c) a general equation for 

other possible mechanisms considered, such as electrostatic stabiliza­
tion. 
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counting these stereoisomers, which represents the solution to 
this problem dating back to van't Hoff.6 

This paper and the following one7 describe the current effort 
to provide the CONGEN (for constrained structure generation) 
program with stereochemical capabilities.8 This paper is pri­
marily concerned with the chemical and mathematical theory 
necessary to this effort. The following paper is concerned pri­
marily with novel algorithms and the computer implementa­
tion.7 A third paper considers the theory in greater mathe­
matical detail with some extensions to other topics.9 

II. Chemical Graphs and Symmetry 

Throughout this paper, chemical structures are considered 
as the graphs10a defined by their constitution.I0b_d Thus, atoms 
correspond to nodes of the graph and bonds correspond to 
edges. Each node is numbered and each edge is labeled as in 
Figure 1. The numbering of the nodes is arbitrary but must be 
retained throughout the procedure.9 Only atoms that are at 
most tetravalent are considered at present. Hydrogens are not 
explicitly considered and are given the number 0. This sup­
pression of hydrogens is a convenient space-saving feature used 
throughout the C O N G E N program,8 but is not necessary to the 
algorithm. This suppression will simplify the presentation here 
without affecting the results in any way. 

There are two standard groups103 that are used to describe 
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Figure 1. 1,2,3,4-Tetramethylcyclobutane and 3,4-dimethylcyclobutene 
with atoms and bonds labeled. 

Table I. Permutations in the Node Symmetry Group and the Edge 
Symmetry Group for Tetramethylcyclobutane (Figure 1) 

nodes0 edges" 

(l)(2)(3)(4)(5)(6)(7)(8) 
(1)(24)(3)(5)(68)(7) 
(12)(34)(56)(78) 
(1234)(5678) 
(13)(2)(4)(57)(6)(8) 
(13)(24)(57)(68) 
(1432)(5876) 
(14)(23)(58)(67) 

(a)(b)(c)(d)(e)(f)(g)(h) 
(ad)(bc)(e)(fh)(g) 
(a)(bd)(c)(ef)(gh) 
(abcd)(efgh) 
(ab)(cd)(eg)(f)(h) 
(ac)(bd)(eg)(fh) 
(adcb)(ehgf) 
(ac)(b)(d)(eh)(fg) 

" Permutation conventions are given in Appendix Al. 

Table II. The Node Symmetry Group and the Edge Symmetry 
Group for Dimethylcyclobutene (Figure 1) 

nodes edges 

(1)(2)(3)(4)(5)(6) 
(14)(23)(56) 

(a)(b)(c)(d)(e)(f)(g) 
(a)(b)(cd)(e)(f)(g) 
(a)(be)(c)(d)(fg) 
(a)(be)(cd)(fg) 

the symmetry of a graph: the node symmetry group and the 
edge symmetry group. The node symmetry group is the group 
of all one to one mappings of the nodes of the graph onto 
themselves, which preserves connectivity of the graph. The 
edge symmetry group is the group of all one to one mappings 
of the edges, which preserves connectivity. Tables I and II give 
the node groups and the edge groups for the two graphs in 
Figure 1. Note that these two groups need not be the same 
size. 

The graph symmetry group that is needed for the chemical 
problems discussed here contains elements that are in both the 
node and edge groups. The requisite group is a product1' of two 
groups: (a) the node symmetry group mentioned above; (b) the 
group of all edge permutations that interchange the two edges 
corresponding to a double bond. The latter is a subgroup of the 
group of all edge permutations. Edge permutations that in­
terchange edges in a triple bond are not included since there 
is no configuration stereochemistry associated with triple 
bonds. As an example, consider the hydrocarbon 4-methyl-
2,5-heptadiene (Figure 2). The product1' of the node symmetry 
group and the double-bond symmetry group is shown in Table 
III. 

III. Configuration Symmetry Group 

This group, which is the key construction in all the appli­
cations described below, is by definition the graph symmetry 
group represented by its action on the configurations of all 
stereocenters. For purposes here, a stereocenter is defined to 
be any non-triply bonded tetravalent or trivalent atom that has 
at most one hydrogen substituent. In practice, for the organic 
structures usually encountered, this corresponds to singly and 
doubly bonded carbon and noninverting nitrogen.123 Atoms 
with more than one hydrogen atom are excluded only because 
of the suppression of hydrogen indices discussed above. In the 
computer implementation7 there is an algorithm that leads to 

1 " 3 5 7 
Figure 2. 4-Methyl-2,5-heptadiene with atoms and bonds labeled. 

Table III. The Graph Symmetry Group of 4-Methyl-2,5-
heptadiene (Figure 2)" 

(2)(3)(4)(5)(6) (4)(26)(35) 

(a)(b)(c)(d) (2)(3)(4)(5)(6)(a)(b)(c)(d) (4)(26)(35)(ac)(bd) 
(ab)(c)(d) (2)(3)(4)(5)(6)(ab)(c)(d) (4)(26)(35)(adbc) 
(a)(b)(cd) (2)(3)(4)(5)(6)(a)(b)(cd) (4)(26)(35)(acbd) 
(ab)(cd) (2)(3)(4)(5)(6)(ab)(cd) (4)(26)(35)(ad)(bc) 

a This is displayed as a product" of the edge symmetry group (first 
column) and the node symmetry group (first row). The size of the 
product group is the product of the sizes of the component groups (2 
X 4 = 8). When computing the product it must be noted that per­
mutations of the nodes imply permutations of the edges. Only per­
mutations of the stereocenters and edges involved in double bonds are 
shown. 

Table IV. The Graph Symmetry Group (GSG) and the 
Configuration Symmetry Group for 2-Propanol (la,b) 

GSG CSG 

(1)(2)(3)(4) 
(1)(23)(4) 

(D(2)(3)(4) 
(l')(23)(4)a 

u The permutation (l')(23)(4) indicates that the exchange of the 
two methyls numbered 2 and 3 inverts the configuration at stereo-
center 1. 

a more restrictive definition of a stereocenter. The configu­
ration at a stereocenter is determined by the numbering asso­
ciated with the attached atoms. Thus, even if some of the 
substituents are identical, two enantiomeric configurations can 
be formally defined for any stereocenter, such as the central 
carbon in 2-propanol (la,b), since all the numbers of the at-

2 
C H , 
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l l 3 

- C - C H 0 
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4 
OH 

3 l l 2 
C H 3 - C - C H 3 

H VQ H 
O ^ O 

tached substituents will necessarily be different. This permits 
specification of a configuration for all tetravalent and trivalent 
atoms without further consideration to ensure complete gen­
erality. 

The configuration symmetry group (CSG) for 2-propanol 
based on the numbered structures la,b will now be explicitly 
constructed. The graph symmetry group for 2-propanol con­
tains only one nontrivial permutation, which interchanges the 
two methyl groups and leaves everything else fixed (Table IV). 
Now, if one considers the two "enantiomeric configurations" 
of 2-propanol based on the atom numbering in la,b, it is easy 
to see that this permutation interconverts these two configu­
rations. Thus it can be said that the permutation (1) (23) (4) 
inverts the configuration at atom 1. This is designated (1') (23) 
(4) and is shown in Table IV. An element in the configuration 
symmetry group is simply the permutation in the graph sym­
metry group augmented with superscripts (') for the stereo­
centers that are inverted by the permutation. Thus, for 2-
propanol, the configuration symmetry group (Table IV) is a 
group with two elements, one of which inverts the configuration 
at stereocenter 1. 

From this simple example it may seem that the CSG is no 
different from the point group with reflective operations cor­
responding to those operations that invert stereocenters. 
However, a more complicated example shows that this is not 
the case. Consider tetramethylcyclobutane, whose atoms are 
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Table V. The Graph Symmetry Group (GSG) and Configuration 
Symmetry Group (CSG) for Tetramethylcyclobutane" 

Table VI. The Graph Symmetry Group and the Configuration 
Symmetry Group for 4-Methyl-2,5-heptadiene (Figure 2)a 

GSG 

(D(2)(3)(4) 
(1)(24)(3) 
(I2)(34) 
(1234) 

CSG 

(1)(2)(3)(4) 
0')(24)(3') 
(12)(34) 
(12'34') 

GSG 

(I3)(2)(4) 
(13)(24) 
(1432) 
(14)(23) 

0 Only permutations of the stereocenters are show 

rr.'„,.,a i TU= « . 

CSG 

(13)(2')(4') 
(1'3')(2'4') 
(1'43'2) 
(1'4')(2'3') 

n. 

GSG 

(4)(5)(3)(2)(6)(a)(b)(c)(d) 
(4)(5)(3)(2)(6)(a)(b)(cd) 
(4)(5)(3)(2)(6)(ab)(c)(d) 
(4)(5)(3)(2)(6)(ab)(cd) 
(4)(53)(26)(ac)(bd) 
(4)(53)(26)(adbc) 
(4)(53)(26)(acbd) 
(4)(53)(26)(ad)(bc) 

CSG 

(4)(5)(3)(2)(6) 
(4)(5)(3')(2')(6) 
(4)(5')(3)(2)(6') 
(4)(5')(3')(2')(6') 
(4')(53)(26) 
(4')(5'3)(26') 
(4')(53')(2'6) 
(4')(5'3')(2'6') 

permutations and is shown in Table V. There are four stereo­
centers and all of them are interconverted by the graph sym­
metry permutations. To construct the CSG for this example, 
it is necessary to determine the effect of permutations that 
exchange stereocenters on the configurations of all the stere­
ocenters. Consider a permutation that takes stereocenter Sa 
to Sb. The four substituents on Sa are arranged in ascending 
order and associated with the labels al-a4. These four atoms 
are mapped to the four atoms bl-b4 by the permutation. This 
mapping defines a permutation of the four numbers 1-4. If this 
permutation is even (see Appendix Al for" definitions of odd 
and even permutations), then there is no change of configu­
ration at stereocenter Sb caused by the permutation. If the 
permutation is odd, there is a change of configuration at Sb and 
this is indicated with a superscript (')• As an example, consider 
the permutation (1234) on the tetramethylcyclobutane graph 
(Figure 1). This permutation takes stereocenter Si to S2. The 
correspondence of substituents follows. 

atom 
H 
C 
C 
CH3 

number 
O 
2 
4 
5 

label 
al 
a2 
a3 
a4 

— 

label 
bl 
b3 
b2 
b4 

number 
O 
3 
1 
6 

atom 
H 
C 
C 
CH3 

Since al goes to bl, a2 goes to b3, a3 goes to b2, and a4 goes 
to b4, the permutation of substituents is (1) (23) (4), which is 
an odd permutation; hence, the element of the CSG becomes 
(12' . . . ) . Performing this procedure for all the permutations 
in the graph symmetry group gives the CSG shown in Table 
V. Note that some of the permutations invert only two of the 
stereocenters; hence any intuitive connection between elements 
of the CSG and reflective operations in the point group is lost. 
A reflective operation would invert all four stereocenters. 
Furthermore, it is important to realize that this procedure does 
not depend on the geometry associated with the orientation of 
the atoms but only on the parity of a permutation that acts on 
the graph associated with the chemical structure.I2b 

As another example, consider the hydrocarbon 4-methyl-
2,5-heptadiene (Figure 2). The graph symmetry group is given 
in Table VI. This group includes several permutations that 
exchange double edges. A permutation that exchanges a double 
edge has the effect of inverting the configurations at both 
stereocenters to which the edges are attached. The CSG for 
4-methyl-2,5-heptadiene is given in Table VI. Only the per­
mutation of stereocenters is given. Intuitively, the configuration 
symmetry group is the invariance group for a particular ste­
reoisomer that takes account of the configurations of the 
stereocenters in the structure. See ref 5 for a more pictorial 
example. 

IV. Applications 
1. Stereoisomer Generator. The configuration symmetry 

group can be used to generate all the distinct stereoisomers of 
a given chemical structure of specified constitution. Each 
distinct stereoisomer corresponds to an equivalence class in the 

" Only the stereocenter permutations are shown. 

set of all 2" possible stereoisomers where n is the number of 
stereocenters. 

For each example structure, the 2" theoretically possible 
stereoisomers are represented by ordered (from left to right) 
n-tuples with "+" or"—" entries. [H ] means stereocenter 
1 has a "+" configuration, stereocenter 2 has a "—" configu­
ration, etc. (See Appendix A3 for the correspondence of these 
"+" and "—" labels and the numbered configurations.) For 
a structure with n stereocenters the algorithm proceeds as 
follows: (1) Take an n-tuple and form its equivalence class by 
the operation of the permutations in the CSG. (2) Save one of 
the members of this equivalence class. (3) Choose another 
n-tuple that is not a member of a previously constructed 
equivalence class and iterate 1-3 until no n-tuples remain. 

The operation of the permutations in the CSG on these n-
tuples may change the n-tuple in two possible ways: 

(1) CSG permutations that contain no stereocenter inver­
sions simply permute the members of an n-tuple. For exam­
ple: 

[+ + - - ] 
(1234) 

> - + + " 

(2) CSG permutations that include stereocenter inversions 
permute the members of the n-tuple and invert some of them. 
The permutation (12'34') is read: 1 goes to 2 and inverts, 2 goes 
to 3, 3 goes to 4 and inverts, 4 goes to 1. 

(12'34') 
[+ + - - ] * [ - - + +] 

As an example of the equivalence classes of the CSG con­
sider tartaric acid (2a-c). This structure has two stereocenters 

COOH COOH COOH 
I l . 

H O ' i ' 

H " i 

111C i " ' " H 
1 
12 

M I C N I I M O H 
I 
I 

COOH 
2 a 

H O i 

H O i 

nunc H 

12 
i C " " " H 

I 

COOH 

2 b 

H in 

HO'" 

' "C O 
L 12 

i n C H 
I 

COOH 

2c 

and exists in three stereoisomeric forms, a meso form and a dl 
pair. The two elements in the CSG collect the four theoretically 
possible stereoisomers into three equivalence classes as shown 
by the multiplication table in Table VII. As a second example 
consider 2-butene (3a,b). This structure has two stereocenters 

CK 3. 
C H = C H 

3a 
CH-

CHo , C H 3 

C H = C H 

3b 

and exists in two isomeric forms (cis and trans). The four ele­
ments in the CSG collect the four possible stereoisomers into 
two equivalence classes, as shown in Table VIII. Finally, 
consider tetramethylcyclobutane (4a-d). This structure has 
four stereocenters and exists in four isomeric forms. The eight 
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Table VII. Generation of the Three Steroisomers for Tartaric 
Acid" 

(D(2) (12) stereoisomer 

[++] 
[+-] 
[-+] 

[++] 
[+-] 
r-+i 

[++] 
[-+] 
[+-] 

d 
meso 
meso 
/ 

" The two permutations in the configuration symmetry group for 
tartaric acid act on the four possible stereoisomers to give three 
equivalence classes corresponding to the three distinct stereoisomers, 
2a-c. 

Table VIH. Generation of the Two Stereoisomers of 2-Butene" 

(1)(2) 0')(2') (12) U'2') stereoisomer" 

[ + + ] [ + + ] 
[-+1 

[ ++] [—] trans 3a 
[ + - ] cis3b 

" The four permutations in the configuration symmetry group for 
2-butene act on the four possible stereoisomers to give two equivalence 
classes which correspond to the two distinct stereoisomers, 3a,b. Each 
row is an equivalence class. 

elements in the CSG collect the 16 possible stereoisomers into 
four equivalence classes, as shown in Table IX. 

4Q 4b 4c 4d 

In summary, this algorithm yields a set of n-tuples, each a 
representative of a different equivalence class. Each of these 
H-tuples corresponds to one of the possible distinct stereoiso­
mers. The computer implementation of this algorithm that 
yields the stereoisomers of an input structure of specified 
constitution is described in the following paper.7 

2. Specification of Configuration. For the organic structures 
of defined constitution being considered here, an unambiguous 
specification of the configuration of stereoisomers is provided 
by establishing the equivalence class of the configuration 
symmetry group. Thus it can be stated that two chemical 
structures of identical constitution differ in configuration if 
and only if they are in different equivalence classes of the 
configuration symmetry group. This method of specifying 
configuration has features that are advantageous to both 
computer and traditional representations of chemical struc­
tures. 

This method of specifying the configuration of a stereoiso­
mer is independent of any geometrical considerations.13'1 A 
stereoisomer is represented by the graph describing its con­
stitution augmented by parity labels ("+" o r" - " designations) 
at each stereocenter. Even though these parity labels ultimately 
refer to geometrical orientation at stereocenters, no use is made 
of this geometric property when the parity labels are deter­
mined by the algorithm described above. The real geometry 
of the two configurations is considered only when the associ­
ation of these parity labels with the two possible configurations 
is done, as shown in Appendix A3. This is an important prop­
erty for a computer representation of a chemical structure since 
it is easier to store and manipulate graphical representations 
augmented with parity labels than to manipulate three-di­
mensional structures given by spatial coordinates. No preferred 
viewing directions or reference coordinates are needed. The 
computer implementation of this method of specifying con­
figuration provides a "canonical" or unique name for each 
stereoisomer.7 

This method of specifying the configuration of a stereoiso­
mer simultaneously considers the local property of the sub-

Table IX. Generation of the Four Stereoisomers of 
Tetramethylcyclobutane" 

4a 4b 4c 4d 

(1)(2)(3)(4) 
d')(24)(3') 
(12)(34) 
(12'34') 
(13)(2')(4') 
(1'3')(2'4') 
(1'43'2) 
(1'4')(2'3') 

[+ + + + ] 
[- + - + ] 
[++ ++] 
[ + - + - ] 
[ + - + - ] 
[ ] 
[ - + - + ] 
[ ] 

[- + ++] 
[+ + - + ] 
[ + - + + ] 
[+ + + - ] 
[+ — 1 
[ — + - ] 
[ - + ~ ] 
[ — + ] 

[ ~ + + ] 
[ + + ~ ] 
[ ~ + + ] 
[+ + ~ ] 
[+ + — ] 
[ ~ + + ] 
[ + + ~ ] 
[ ~ + + ] 

[- + + - ] 
[ + " - + ] 
[ + — + ] 
[- + + - ] 
[+ — + ] 
[- + + - ] 
[- + + - ] 
[ + ~ + ] 

" The eight permutations in the configuration symmetry group for 
tetramethylcyclobutene act on the 16 possible stereoisomers to give 
four equivalence classes which correspond to the four distinct ste­
reoisomers, 4a-d. Each column is an equivalence class. The operation 
of the CSG on only the top entry of each column is shown. 

stituents at each stereocenter and the global property of the 
overall symmetry of the structure. It is important to consider 
both these kinds of properties to obtain a convenient and unique 
representation of a stereoisomer. A method, such as the R and 
5 naming system,13b that specifies configuration by considering 
each stereocenter locally becomes extremely complicated for 
highly symmetrical structures.1313 Considering each stereo­
center locally is necessary, however, since merely specifying 
the overall symmetry (i.e., a global property) of a chemical 
structure would not give a unique designation, particularly 
since most chemical structures have little or no symmetry. The 
method described above provides a local designation at each 
stereocenter ("+" or"—") and uses the overall symmetry (the 
configuration symmetry group) to determine these local 
stereocenter designations unambiguously. Once the configu­
ration specification has been made, the symmetry group is no 
longer needed and is not part of the specification. 

3. Stereoisomer Counting. The configuration symmetry 
group can be used to give a single equation for counting the 
number of stereoisomers of an organic structure of defined 
constitution. This isomer counting problem dates back to the 
time of van't Hoff6 and has heretofore lacked a general solu­
tion, although a variety of special cases have been treated 
successfully (vide infra). The objective was to obtain an 
equation that gives the number of stereoisomers for a structure 
requiring only a knowledge of the symmetry group of that 
structure. 

The problem of counting the number of various kinds of 
isomers of chemical structures has fascinated chemists and 
mathematicians for a long time.14 A successful approach for 
counting substitution isomers makes use of the Polya enum­
eration theorem.15 The formulation of the problem used in this 
approach can be used with modification in the present effort. 
An example of a substitution isomer counting problem is to 
determine the number of possible chlorobenzenes (i.e., from 
mono- to hexa-). The problem is formulated as a mapping 
problem in which the six possible sites on the benzene skeleton 
are mapped to the two possible ligands (Cl and H). This 
method can be used for enumeration of stereoisomers if the 
stereoisomers can be considered somehow as substitution iso­
mers.16 Thus, for a given chemical structure for which the 
number of stereoisomers is to be counted, part of the structure 
must be considered as a skeleton with substitution sites and part 
must be considered as ligands. This is generally an arbitrary 
distinction. As an example, consider the substituted cyclobu-
tadiene structure 5. The ligands are the four constitutionally 
identical chiral secondary alcohols C2H5O-, and the skeleton 
is the cyclobutadiene fragment with four substitution sites. It 
is assumed that cyclobutadiene has Z)4 symmetry. Each ligand 
can have two absolute configurations; thus the problem has 
been reduced to a substitutional isomerism problem with four 
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Table X. Computation" of the Number of Stereoisomers of the Cyclobutadiene Derivative, 5 

permutation 
polynomial 
counting term 

E 
(1)(2)(3)(4) 

(Zi)4 

2 4 
+ 
+ 

2C4 
(1234) 
2(J4Y 
2X2 

+ 
+ 

C, 
(13)(24) 

(Ji)2 

Y-
+ 
+ 

2C2' 
(12)(34) 

2(Ji)1-
2X2 2 

+ 
+ 

2C2" 
(1)(24)(3) 
2(J1V-(J2) 

2 X 2 X 2 X 2 
" The total number of stereoisomers is the total of the bottom row divided by 8, the order of the CSG. 

Table XI. Computation0 of the Number of Stereoisomers of Tetramethylcyclobutane (4a-d) 

permutation 

polynomial 
counting term 

(D(2)(3)(4) 

C î)4 

2 4 
+ 
+ 

(12'34') 
(1'43'2) 
2(A)1 

2X2 
+ 
+ 

(1'3')(2'4') 

(Ji)2 

Y 
+ 
+ 

(1)(2)(34) 
(l'4')(2'3') 

2(Ji)2 

2X2 2 
+ 
+ 

d')(24)(3') 
(13)(2')(4') 

0 
0 

a The number of stereoisomers is the total of the bottom row divided by 8, the order of the CSG. 

Table XII. Computation of the Number of Stereoisomers of the Tetrahedron Homologue (Figure 3)" 

permutation 
class order 
counting term 

(D(2)(3)(4) 
I 

2 4 

0)(23'4') 

X 2 X 2 

(1'2')(3'4') 
3 

3X2 2 

(l')(2')(34) 
6 
0 

(1234) 
6 

6X2 

" Only one representative member of each conjugacy class of the configuration symmetry group is shown. The number of stereoisomers 
is equal to the total of the bottom row divided by 24. 

sites related by D4 symmetry and two kinds of ligands. This 
problem can now be solved using the Polya enumeration the­
orem,16 and the solution is indicated in Table X. The top row 
shows the symmetry operations in the D4 group collected by 
conjugacy class. (See Appendix A2 for a definition of conju­
gacy class and for a summary of properties needed for isomer 
counting.) The second row gives a representative element ex­
pressed as a permutation on the four skeletal sites. The third 
row gives the polynomial (termed the cycle index) that results 
from each type of permutation. The subscript gives the length 
of the cycles that compose the permutation and the exponent 
gives the number of cycles of that length. Thus, (f\ )2 (/2) in­
dicates that the permutation of the kind (1) (24) (3) has two 
cycles of length 1 and one of length 2. Since there are two kinds 
of ligands possible (i.e., the two absolute configurations), the 

number of stereoisomers is obtained by substituting 2 into the 
polynomial for every / te rm and dividing by the number of 
elements in the group (eight, in this case). This gives six ste­
reoisomers, which is the correct answer. The six stereoisomers 
are symbolized by structures 6a-f. 

There are two reasons why this method cannot be used for 
the general case. First, factoring the problem into sites and 
ligands is not always possible (vide infra); second, the Polya 
enumeration theorem in its original form only considers sym­
metries of the sites and not of the ligands. Thus, in the example 
above, no account was taken of the fact that the two kinds of 
ligands being substituted on the skeleton were enantiomeric. 
Had the two ligands been CH3- and Cl-, there would still have 
been six isomers. 

A modification of the Polya theorem, termed the power 
group enumeration theorem,17 is somewhat more versatile in 
that some symmetries that exchange ligands are considered. 
The additional symmetry is the one that converts all the ligands 
of one type into another type. This permits the application of 

this theorem to a wide variety of isomer counting problems, 
properly formulated.18 

A general solution to the stereoisomer counting problem is 
obtained by using the exponentiation group enumeration 
theorem19 and the configuration symmetry group. The addi­
tional versatility of the exponentation theorem as compared 
with the power theorem and the original Polya theorem is best 
demonstrated by an example. Consider the problem of enu­
merating the stereoisomers of tetramethylcyclobutane (4a-d). 
This structure has four stereocenters that comprise the entire 
molecule; hence, a factoring into sites and ligands is not ap­
parent. Instead, the problem is formulated as a mapping of 
stereocenters to configurations. 

stereocenters (1-4) — configurations ( "+" or "—") 

Stereocenters and configurations were defined in section 3. The 
solution to the enumeration problem is indicated in Table XI. 
The eight elements in the configuration symmetry group are 
given on the top two rows of Table XI. With one exception, the 
polynomial terms are computed as in the Polya method and 
are indicated in the third row of Table XI. The exception is that 
any permutation in the CSG with an odd number of inversions 
in a cycle contributes zero to the total. Thus, permutations of 
the type (1') (24) (3') have an odd number of inversions in two 
cycles (I ') and (3') and hence contribute zero, as indicated in 
Table XI. The number of stereoisomers is obtained by substi­
tuting 2 for / in the polynomial and dividing by the size of the 
CSG (eight, in this case). This gives the correct total of four 
stereoisomers, as shown in structures 4a-d. Note the superficial 
resemblance between the cyclobutadiene problem and this 
cyclobutane problem. The number of stereocenters and the size 
of the symmetry groups are the same in both cases; however, 
the number of stereoisomers differs. The necessary feature of 
the exponentiation group enumeration theorem is that sym­
metries that invert the configuration at some but not all 
stereocenters can be correctly accommodated. It was noted 
earlier that the CSG will usually contain permutation inver­
sions that invert the configurations at some, but not all, 
stereocenters. The power group theorem can only accommo­
date symmetries which invert the configurations at all stere­
ocenters, and the original Polya theorem considers only site 
symmetries—as discussed above. 

The stereoisomer enumeration equation can be given as 

^ E ^Tl 2"; TI K* 
1=1 ;=1 fe=0 

l )mod 2 (1) 
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where g is the size of the CSG, c is the number of conjugacy 
classes in the CSG, hj is the size of the /th conjugacy class, p 
is the number of stereocenters, n, is the number of cycles of 
length j , and n^ is the number of inversions in the kih cycle 
of lengthy in the /th conjugacy class. «,yo is defined to be equal 
to 0.20 

As a second example, consider the problem of enumerating 
the stereoisomers of the tetrahedrane homologue (Figure 3). 
This structure has four stereocenters, numbered as shown. The 
calculation using eq 1 is indicated in Table XlI. The first row 
gives a representative element from each conjugacy class of 
the CSG for this structure. The second row gives the size of 
each conjugacy class, which is the coefficient h, in (1). The 
third row gives the computed term for each conjugacy class. 
Note that there is only one zero term. Dividing by g = 24 gives 
three stereoisomers. These are shown in Figure 3. Note that 
the structure with all hydrogens pointing inside the cage is 
identical with the structure with all hydrogens pointing out. 
These structures can turn "inside out" in analogy with the 
bicyclic structures reported by Simmons and Park.21 

In conclusion, the construction of the configuration sym­
metry group for a chemical structure of defined constitution 
leads to the solution of three diverse problems concerning the 
stereochemistry22 of the structure. These are the problems of 
generation of all distinct stereoisomers, specification of the 
configuration of each stereoisomer, and enumeration of the 
stereoisomers from a single equation. 
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Appendix Al. Permutations 
Permutations of the type (123) are read: 1 goes to 2,2 goes 

to 3, 3 goes to 1. Multiplication of two permutations proceeds 
from left to right: (123) (1234) = (1324). A cycle in a per­
mutation is the set of numbers between a left and right pa­
rentheses. The permutation (12) (34) has two cycles of length 
2. A cycle is even if its length is odd. A cycle is odd if its length 
is even. To determine whether a permutation is odd or even 
simply take the sum of the odd or even characters of the cycles 
by the rules: 

odd + odd = even 

even -I- even = even 

even + odd = odd 

Thus (1) (2) (34) is even + even + odd = odd; (12) (34) is 
even; (1) (234) is even; (1234) is odd; etc. Permutations with 
inversions of the type (12'34') are read: 1 goes to 2 and inverts 
configuration; 2 goes to 3; 3 goes to 4 and inverts configuration; 
4 goes to 1. 

Appendix A2. Conjugacy Classes 
Conjugacy classes in a group are defined in ref 2a and 12a. 

Two elements a and b are conjugate in G if for some g in G, 
gag~' = b. Two properties of conjugacy classes are important 
for this paper: 

(1) All elements in a conjugacy class have the same per­
mutation cycle structure (see Appendix Al for definitions). 

(2) All elements in a conjugacy class have the same number 
and length of cycles with an odd or even number of inversions. 
The actual number of inversions may vary as long as the 
number remains odd or even. References 4 and 18 include a 

-> 3< 

Figure 3. The three possible stereoisomers of a tetrahedrane homologue 
and their interconversion. Dots on the vertices of the tetrahedrons indicate 
that the remaining substituent points outside the cage of the tetrahedron. 
Open circles indicate that this substituent points inside the cage. The three 
distinct stereoisomers are in each of the three columns of the figure. 
Starting from the left, the stereoisomer with all four substituents pointing 
outside the cage is equivalent to the stereoisomer with all four pointing 
inside, by the operation that turns the structure "inside out." If stereocenter 
1 is inverted, a distinct stereoisomer is obtained that has one substituent 
pointing inside the cage (middle column). If stereocenter 2 is also inverted, 
the final distinct stereoisomer is obtained (right column). 

discussion of this property, of odd or even number of inversions 
in permutation cycles. See Table XI for examples. 

Appendix A3. Configurations 
The correspondence between the parity labels ("+" or "—") 

and the configuration of a stereocenter based on the numbering 
of the atoms is shown below. 

1 1 

2 

+ 
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mers from a given empirical formula. 
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possible isomers for a given structural problem to assure that 
none have been overlooked. However, the complete collection 
of possible isomers can be extremely large so it is important 
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that the method of generation of these possibilities can be 
constrained to only a subset of possibilities, if partial structures 
are known. The algorithm presented here for generation of 
stereoisomers is capable of admitting certain constraints that 
reduce the number of stereoisomers generated. 

I. Overview and Flow Diagram 
When a chemist is faced with the problem of determining 

the number of stereoisomers of a structure of given constitu­
tion, he will probably break the problem into two parts. First, 
he will try to find the features of the structure which give rise 
to configurational stereochemistry, such as asymmetrically 
substituted carbon atoms and double bonds. Symmetrically 
substituted atoms such as methylenes or gew-dimethyls will 
be rejected as potential stereocenters. Second, having found 
n stereocenters, he will assume that there are 2" possible ste­
reoisomers, unless the structure has some overall symme­
try—in which case this total may be reduced. In cases with 
overall symmetry, the distinct stereoisomers will probably be 
found by trial and error—by varying the configuration of 
stereocenters in turn and seeing if new stereoisomers are gen­
erated. 

The algorithm to solve the problem of stereoisomer gener­
ation is summarized in the flow diagram shown in Figure 1. 
Just as the chemist, the algorithm faces two key problems: to 
determine the potential stereocenters and to correctly gauge 
the effect of any structural symmetry. A brief overview of this 
algorithm follows (numbers correspond to those on Figure 
1). 

(1) The input structure is processed to find multiply bonded 
atoms that are potential stereocenters (e.g., olefins, allenes) 
by the module "process multiple bonds". The symmetry group 
of the input structure is also determined at this stage by the 
module "find symmetry group". Structures A and B in Figure 
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